106 research outputs found

    Convolutive superposition for multicarrier cognitive radio systems

    Full text link
    Recently, we proposed a spectrum-sharing paradigm for single-carrier cognitive radio (CR) networks, where a secondary user (SU) is able to maintain or even improve the performance of a primary user (PU) transmission, while also obtaining a low-data rate channel for its own communication. According to such a scheme, a simple multiplication is used to superimpose one SU symbol on a block of multiple PU symbols.The scope of this paper is to extend such a paradigm to a multicarrier CR network, where the PU employs an orthogonal frequency-division multiplexing (OFDM) modulation scheme. To improve its achievable data rate, besides transmitting over the subcarriers unused by the PU, the SU is also allowed to transmit multiple block-precoded symbols in parallel over the OFDM subcarriers used by the primary system. Specifically, the SU convolves its block-precoded symbols with the received PU data in the time-domain, which gives rise to the term convolutive superposition. An information-theoretic analysis of the proposed scheme is developed, which considers different amounts of network state information at the secondary transmitter, as well as different precoding strategies for the SU. Extensive simulations illustrate the merits of our analysis and designs, in comparison with conventional CR schemes, by considering as performance indicators the ergodic capacity of the considered systems.Comment: 29 pages, 8 figure

    Equalization Techniques of Control and Non-Payload Communication Links for Unmanned Aerial Vehicles

    Get PDF
    In the next years, several new applications involving unmanned aerial vehicles (UAVs) for public and commercial uses are envisaged. In such developments, since UAVs are expected to operate within the public airspace, a key issue is the design of reliable control and non-payload communication (CNPC) links connecting the ground control station to the UAV. At the physical layer, CNPC design must cope with time- and frequency-selectivity (so-called double selectivity) of the wireless channel, due to lowaltitude operation and flight dynamics of the UAV. In this paper, we consider the transmission of continuous phase modulated (CPM) signals for UAV CNPC links operating over doubly-selective channels. Leveraging on the Laurent representation for a CPM signal, we design a two-stage receiver: the first one is a linear time-varying (LTV) equalizer, synthesized under either the zero-forcing (ZF) or minimum mean-square error (MMSE) criterion; the second one recovers the transmitted symbols from the pseudo-symbols of the Laurent representation in a simple recursive manner. In addition to LTV-ZF and LTV-MMSE equalizers, their widely-linear versions are also developed, to take into account the possible noncircular features of the CPM signal. Moreover, relying on a basis expansion model (BEM) of the doubly-selective channel, we derive frequency-shift versions of the proposed equalizers, by discussing their complexity issues and proposing simplified implementations. Monte Carlo numerical simulations show that the proposed receiving structures are able to satisfactorily equalize the doubly-selective channel in typical UAV scenarios

    "Tecniche di ricezione spazio-temporali e di localizzazione per reti wireless mesh" nell'ambito del progetto PRIN 2005 "Reti Mesh Multi-Antenna basate su 802.16" (coordinatore nazionale Prof. E. Baccarelli)

    No full text
    Attività T2.1: Codici spazio-tempo multiportante per canali a banda larga affetti da fading Attività T2.2: Architetture efficienti per ricevitori ad antenne multiple Attività T2.3: Tecniche con antenne intelligenti Attività T3.6: Strato di connessione mes
    • …
    corecore